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Spontaneous magnetisations of the Ising model on the 
bathroom tile lattice 

R J Baxter and T C Choy 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, GPO Box 4, Canberra ACT 2601, Australia 

Received 5 December 1987 

Abstract. We evaluate the site spontaneous magnetisations on the general 4-8 or bathroom 
tile lattice using mappings to checkerboard, free-fermion and Union Jack k ing  models. 
Our results verify the conjecture of Lin et al, who proposed their formula from twelfth-order 
low-temperature series expansions. 

1. Introduction 

In two recent papers, Lin and Fang (1985) and Lin et a1 (1987) considered the 
spontaneous magnetisation of the exactly solvable two-dimensional Ising model on a 
4-8 or bathroom tile lattice (figure l),  whose partition function was given by Utiyama 
(1951) over thirty years ago. Lin et a1 (1987) corrected the earlier results of Lin and 
Fang (1985) for the spontaneous magnetisation (aj) ,  and proposed a conjecture for 
(a l )  after investigating a twelfth-order low-temperature series expansion. They 
originally used the traditional route of Onsager (1949) and Montroll et al (1963) and 
found an apparent impass6 in evaluating limits of block Toeplitz determinants (Lin 
et a1 1987). In this paper we provide an exact derivation of the site spontaneous 
magnetisations using mappings onto free-fermion and checkerboard Ising models 
(Baxter 1986). Such mappings were used previously to obtain the site spontaneous 
magnetisations of the related (dual) Union Jack lattice (Choy and Baxter 1987). The 
basic approach here is not to follow the traditional route of Onsager (1949) and 
Montroll et a1 (1963) which involves evaluation of Toeplitz determinants but rather 
via mappings to known results of the free-fermion and checkerboard Ising models 
(Baxter 1986). Using these transformations we first derive an identity relating long- 
distance correlations on the bathroom tile lattice to those of the checkerboard Ising 
model. By taking the infinite-distance limit we then relate the spontaneous magnetisa- 
tions (a1) and (a2) (figure 1) to M O ,  the spontaneous magnetisation of the checkerboard 
model (Baxter 1986). Thus we divide this paper into three main sections. Section 2 
discusses various mappings of the bathroom tile with its dual, the Union Jack lattice 
which is related to the checkerboard and free-fermion models. Section 3 derives the 
correlation identity mentioned above by modifications of these models and reversing 
the mappings. Section 4 provides the solution of the two spontaneous magnetisations 
(a , )  and (a2) for the general bathroom tile lattice (figure 1). The other two, (a3) and 
(a4), follow from symmetry and a trivial permutation of labels. Agreement with the 
conjectured formula for the special case of Lin et a1 (1987) will also be indicated here. 
We follow the notation of Baxter (1986) for consistency wherever possible, which 
differs from the notation of Lin et a1 (1987). 
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Figure 1. Two-dimensional Ising model on a bathroom tile lattice (model 1) with six 
coupling constants K ,  , K,, K,, K,, K ’ ,  and K;. Bold lines have extra factors exp( K,u,u,) + 

upI exp(K,u,c,,) with the exception of the left and right pairs (broken lines) as discussed 
later. 

2. Mappings 

Hereafter we shall refer to the Ising model on the bathroom tile lattice of figure 1 as 
model 1. We start our route outwards by the duality transformation (Kramers and 
Wannier 1941; see also Baxter 1982) that the dual of model 1 is a Union Jack lattice 
which we refer to as model 2 (see figure 2) with the bonds given by: 

model 2 exp(-2Lj) = tanh Ki  i = 1,2,  3 ,4  

exp( - 2 4 )  = tanh K j  j = l , 2 .  

By summing over fourfold coordinated spins, this is related to a free-fermion model 
(Baxter 1986, Choy and Baxter 1987) (our model 3; see figure 3) with weights given by 

model 3 W(a,  b,c ,d)=2exp{[L’,(ad+bc)  

+L;(ab+ cd)]/2} cosh(L,a + L2b+ L3c+ L4d) 

which we rewrite as follows: 

w ,  = W(++++)=2 exp(L:+L;) cosh(L,+ L2+L3+L4)=p(1+tl t2t3t4)  

w 2  = W( +-+-) = 2 exp( -Li - L;) cosh( L1 - L2 + L3 - L4) = pt t i (  t ,  f 3  + t2t4) 

w 3 =  W(+--+)=2 exp(L:-L;) c o s h ( l , -  L 2 - L 3 + L 4 ) = p t ; ( t 1 t 4 + t 2 t 3 )  
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Figure 2. Union Jack lattice (model 2)  related to model 1 via the duality transformation 
( 1 )  and equivalent to the free-fermion model of figure 3. On bold lines the interaction 
coefficients ( L 3 ,  L,, Li) are negated. On the right (left) broken line the coefficient L; is 
replaced by ~ ( - I I . ) .  

d [:.I:( dE[ dE[ d:..:i; 
a b b o  b o  b a  

Figure 3. Free-fermion model related to the Union-Jack model 2 with weights U , ,  w ~ , .  . . , ug 
given by ( 3 )  and also equivalent to a checkerboard Ising model (model 5 ) .  

w 4 =  W(++--) = 2 exp(-L’, + L;) cosh(L, + L2-  L3 - L4) = p r ; ( t l r 2 +  r 3 f J )  
( 3 )  

wg = W(+-++) = 2 cosh( Ll - L2 + L3 + L4) = p (  t 2 +  t l  t 3 f 4 ) (  ti t ; ) ’12 

wg= W(+++-) = 2 cosh(Ll+ L2+ L3- L4) = p (  t4+  t l t 2 t 3 ) ( t { t ; ) ’ 1 2  

w 7 =  W(++-+)=2co~h(L,+L~-L~+L,)=p(t~+t,t~t~)(t{t~)”~ 

w S  = W(-+++) = 2 cosh(-L, + L2+ L3+ L4) = p ( t l  + f2f3f4) (  t ’ , t ; ) ’12  

where 

ti = tanh K i  

t j  = tanh K j  

for i = 1,2, 3,4 

for j = 1, 2 
(4) 

and p is a normalisation factor. Unfortunately this model has w g  # w6 and w 7  # ws 
which is inconsistent with the derivations of Baxter (1986) (see equation (2.9) of this 
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reference). To overcome this inconvenience we shall make a trivial modification of 
model 3 to model 4 which has weights: 

model 4 WF(a, 6, c, d )  = exp{-[X(cd - a b ) +  Y(ad - bc)]/2} W(a, b, c, d )  ( 5 )  

where we choose X ,  Y such that 

WF(a, c, d l  = wF(c, d, a, b, 

i.e. 
x+  Y 

wF5 = e-x- 'w5 = wF6 = e 
x - Y  

wF7 = e  o7 = w F 8 =  e Y-x U 8  

so 

e4x = w5w8/w6w7 

e4 = w 5 w 7 / w 6 w 8 .  

Then from Baxter (1986) there exists a checkerboard Ising model (our model 5; see 
figure 4) with p, M, P, J1 , J 2 ,  J,, J4 such that 

model 5 W,(a, b, c, d ) = 2 p  exp{[P(cd-ab)+ M ( a d - b c ) ] / 2 } c o s h ( J l a + J , b  

+ J,c+ J 4 d )  ( 9 )  

where solutions for p, M, P, J1, J 2 ,  J3 ,  J4 are all given in terms of weights w 1  , w 2 ,  w 3 ,  
w4, w 5 ,  w 6 ,  w7 and o8 (Baxter 1986). In particular we shall later require 

cosh 2 P  = ( w 1 w q + w 2 w 3 ) / ( 2 J w 5 w g w , w 8 )  

cosh 2 M  = ( w I w 3 +  w2w4)/(2dw5w6w7wg). 
(10) 

These two expressions, and our later equations (22) and (23), are invariant under the 
above transformation w 5  + 0 F 5 ,  w6 + wF6, w7 + wF7, w 8  * wF8. From ( 5 )  it follows 
that 

W(a, b, c, d )  = 2p exp{[A(cd - a b ) + p ( a d  - bc)]/2} cosh(J,a + J 2 b +  J,c+ J4d)  (11) 

where A = X + P and p = Y + M with X, Y given by (8), and M, P by (IO). 

Figure 4. Checkerboard Ising model equivalent to the free-fermion model of figure 3. 
Edges with hatched lines have their interaction coefficients J ,  replaced by -J ,  in the 
modified dual partition function ZEod of (14). 
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Finally we define model 6 via a duality transformation of model 5, i.e. 

model 6 exp( -2jz)  = tanh Ji i = 1, 2 ,3 ,4  (12) 

which completes an exposition of all the mappings we shall use in the next section 
where the sequence is reversed. 

3. Correlation identity 

We start with model 6 and consider the two-spin correlation (ala,,) of figure 5 with 
the lattice drawn diagonally. Then the expression for (ala,,) is 

where Z is the partition function and Z m o d  is a modification of Z by converthg the 
weights of some edges (bold lines in figure 5) from exp(jiaiaj) to aia, exp(Jiujaj), 
leaving the rest of the Boltzmann factors unaltered in 2. Now we make a duality 
transformation (12) going to model 5. Then 

where to within cancelling normalisation factors, ZD is the dual of Z and z:od is the 
dual of Z m o d .  From (12) the equivalent modification in this case is obtained by 
converting Ji to -1, along the hatched lines in figure 4, which are the dual of the bold 
lines in figure 5. Continuing backwards to model 4 we see that the effect of this 
negation of bonds is to modify shaded faces (figure 6) of the free-fermion model 4 so 
that their weights (1 1) become: 

W (  a, b, c, d )  + J 3 ,  J4 negated in (1 1) 

E W(a,  b, -c, - d )  and p + -p, (15) 

The A and p weights in (1 1) cancel between adjacent faces, except for the leftmost 
and the rightmost edges of the shaded faces (broken lines in figure 6) which acquire 
weights exp(-pad) and exp(pb’c’) respectively. Going on to the equivalent model 2, 
the Union Jack (we bypass model 3 which is a trivial modification of model 4; see 
0 2), we see that these negations have the effect of negating L3, L4 and L{ along the 

Figure 5. Two-spin correlation (u,u,>) on the dual checkerboard lsing model (model 6 ) .  
Edges ( i , j )  with bold lines have an extra factor up, in the modified partition function, 
zmod of ( 1 3 ) .  



2148 R J Baxter and T C Choy 

d l  C I  I c i  

Figure 6. Free-fermion model equivalent of model 5 .  The shaded regions have weights 
W(a ,  b, e, d )  modified to W ( a ,  b, -e, - d )  and p + -p. The broken lines have exceptional 
boundary weights with additional factors shown. 

heavy lines of figure 2 ,  with the exception for the leftmost and rightmost edges which 
are replaced by - p  and p respectively. Now we make the final step in the journey 
back to model 1, our bathroom tile, via a duality transformation. By similar arguments 
as for the step from model 6 to model 5 we see the effect of negating bonds on the 
Union Jack as introducing extra factors exp( K p p , )  + upJ exp( K p p J )  along the path 
(bold lines) in figure 1 as indicated. There are extra factors on the leftmost and 
rightmost boundary pairs that must now be considered which include normalisation 
factors R and S respectively, in the duality transformation. For the leftmost pair this 
is given by 

(dual of exp(-pad))/(dual of exp( l ;ad) )  = ( R / S )  exp[(E - K:)ad] (16) 

and for the rightmost pair by 

(dual of exp(pb‘c’))/(dual of exp(Lib‘c’)) = (R/S)b’c’exp[(F -Ki)b’c’] (17) 

where R exp $ = cosh p, R exp( - E )  = sinh p, S exp K i = cosh L’, and S exp( - K ;) = 
sinh L: ,  which follows from duality. Thus S, R and are completely determined by 
L’, and p ;  in particular 

( R / S )  exp($ - K i )  =cosh p/cosh L;  

( R / S )  exp( K ; - $) = sinh p/sinh L: .  

From these results our correlation identity follows: 

( R 2 / S Z ) ( [ c o s h ( ~ - K K ) + ( + , u 2 s i n h ( ~  -K’,)]cT,~,(T~cT~.  . . 
X g n  - 1 g n  - 1  g n  [cosh( E - K ; ) + g n  - 1 gn sinh( $ - K ’I )])model I 

= ( u l ( + n ) m o d e l 6  (19) 

which relates correlations on the bathroom tile lattice (model 1) to those of the 
checkerboard Ising model (model 6). Since cr; = 1, the intermediate g, cancel, leaving 

(R2/S2)([cosh(@ - K { ) g 2 +  (T, sinh($ - K i ) ]  

X [cosh($ - K ’ , ) v ,  + vn-1 sinh(E - K ; ) ] ) m o d e ~  I 

= (‘lun)model 6 .  (20) 
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4. Spontaneous magnetisations 

Consider the infinite distance ( n  + 00) limit of (19). We obtain 

Mi=(R2/S2)[cosh(E -Kl)(a , )+(a, )s inh(@ - Kil l2  (21) 
where MO is the spontaneous magnetisation of the dual checkerboard model 6. This 
is in turn the disorder parameter of model 5 and of the free-fermion models 3 and 4. 
We define r2, h z ,  Cl as in Baxter (1986): 

(22) 

(23) 

(24) 

2(W,W,W,W,)"* Tz = sech 2 M = 
wIw3 + w2w4 

h2 = ( w:+ W :  - W :  - w:)/[2( W , W ~  + 0204)] 
n2 = (r:+ h: - i)/r ; .  

MO is obtained from equation (4.19) of Baxter (1986), except that R is inverted because 
our MO is the spontaneous magnetisation of the dual model. Thus 

where s=(w1+w2+w3+w4) /2 .  
Taking the square root of (21), using (18) and the fact that p = Y+ M, we obtain 

F cosh( Y +  M) + G sinh( Y+ M )  = MO (26) 
where 

2 F  = ((aJ+(a,))/cosh L: 

2 G  = ((a2)+(a1))/sinh L;. 
If the bathroom tile model parameters K , , .  . . , K4, K : ,  K ;  are given, then 

L , ,  . . . , L4, Li, L; are defined by (1) and w l , .  . . , wa by (3); Y by (7) and M by (10). 
There are actually two solutions for M: +A4 and -M, just as there are two solutions 
for P (+P and - P ) ,  corresponding to the fact that to a given free-fermion model there 
correspond four equivalent checkerboard Ising models (Baxter 1986). 

We could have used any one of these four checkerboard models as our model 5 :  
the choice cannot affect M O ,  (al) or (az); so in addition to (26) we have 

F cosh( Y - M) + G sinh( Y - M) = MO. (28) 
We can solve (26) and (28) for F and G: 

F = MO cosh Y/cosh M 

G = -MO sinh Y/cosh M 
(29) 

and (27) then yields 

(al) = MO cosh( L: + Y)/cosh M 

(aJ= MO cosh(L: - Y)/cosh M. 
(30) 

From symmmetry (a3) and (a4) are given by changing L: + L;, M + P and Y + - X  in 
(30) respectively. For the special case of K ,  = K 3 ,  K 2  = K4 of Lin er al (1987) we find 

4yxx'  
(aI) = (a2) = MO 1 + ( ( l + X 2 ) ( l + X f 2 )  

where y = exp(-2K',), x = exp(-2K2) and x'= exp( -Kl) ,  in agreement with their 
conjecture. 
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5. Conclusion 

In this paper we derived a correlation identity for the 2-spin correlation function 
between Ising models on the bathroom tile and the checkerboard lattices. By consider- 
ing the infinite distance limit of this correlation identity we related the site spontaneous 
magnetisations of the bathroom tile lattice with that of the checkerboard model. We 
have thus proved the conjectured formula of Lin et a1 (1987) who have earlier proposed 
their formula from a twelfth-order low-temperature series expansion. 
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